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ABSTRACT With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged
as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of
yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been
made developing genetic and genomic resources for Andropogoneae and advances in comparative and computational
genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and
sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits
in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and
phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of
its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience.
We demonstrate the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae
by performing genome-wide association analysis for two contrasting phenotypes representing key components of
structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar
transporter, associated with increased nonstructural carbohydrates that could lead to bioenergy sorghum improvement.
Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions,
suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization
of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the
value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy
production.
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lthough numerous plant species have been evaluated as po-
A tential bioenergy feedstocks, many of the most promising
candidates belong to a tribe of grasses, the Andropogoneae, that
includes many agriculturally important species, such as maize,
sorghum, and sugarcane. The genetic improvement of bioen-
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ergy candidates within this tribe is challenging because little is
understood about the genetic architecture of many of their most
relevant bioenergy traits. Further complicating this improve-
ment, the Andropogoneae have distinct phenotypic characteris-
tics, such as a Type II cell wall (Vogel 2008), C4 photosynthetic
mechanisms, and various carbon partitioning patterns (Braun
and Slewinski 2009), which limit the pertinence of basic research
in C3 non-grass model organisms, e.g. Arabidopsis. Additionally,
many of the proposed candidates, such as switchgrass (Panicum
virgatum) and members of the Saccharum genus, including sug-
arcane, have complex genomes, which limit the generation and
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dissemination of genetic and genomic resources. The designa-
tion of a functional model grass species and the subsequent
development of a community resource for the genetic dissection
of carbon partitioning, biomass composition, and other yield-
related bioenergy traits is needed to increase collaboration and
accelerate bioenergy improvement.

Sorghum bicolor (L.) Moench has emerged as one of the pre-
ferred candidates for bioenergy feedstocks and has warranted
continued investment for development as a dedicated bioenergy
crop due to its high productivity, widespread adaptability, and
relative ease of genomic analysis (TERRA 2015). Sorghum is
a drought-tolerant, C4 grass with a diverse gene pool that can
be exploited for a variety of traits, including those most desir-
able for bioenergy production. Currently, the existing sorghum
germplasm contains four predominant types: grain, sweet, for-
age, and biomass. Each of which has a preferred ideotype with
varying proportions of grain, stalks, leaves, nonstructural sug-
ars, etc. This range of phenotypic diversity not only allows
sorghum to serve as a functional model to study various bioen-
ergy and biomass-related traits in Andropogoneae, but it also
allows sorghum to be optimized to serve as raw material for
promising conversion technologies (Calvifio and Messing 2012).

Currently, grain, sweet, and biomass sorghums all serve as
feedstocks for various conversion technologies. Grain sorghum,
which accumulates starch in the seed, is used as a key feedstock
for starch-ethanol conversion throughout the United States (Wu
et al. 2010). Sweet and biomass sorghums, which are respec-
tively characterized by the accumulation of non-structural and
structural carbohydrates in the stalk, provide promise for high-
yielding, sustainable bioenergy production. Biomass sorghums
have recorded yields of up to 30 dry tons per hectare while sweet
sorghums have shown the potential to produce 6,000 liters of
ethanol per hectare (Wu et al. 2010). Both sweet and cellulosic
types have great potential for various bioenergy production
methods already in use across locations worldwide. Under-
standing the genetic mechanisms underlying their differences
will be key to maximizing their potential as bioenergy crops.

The distinguishing factor among the different sorghum bioen-
ergy types, and the other bioenergy candidates in general, is how
each partitions, translocates, and stores carbon, although the bio-
chemical pathways, machinery, and their genetic controls that
allocate carbon to various compositional constituents (i.e., lignin,
cellulose, and hemicellulose) are not fully understood (Vogel
2008). Structural carbohydrates, including cellulose, hemicel-
lulose, and pectin, along with the phenolic polymer lignin, are
the major components of cell walls (Vogel 2008), while the pri-
mary constituent of non-structural carbohydrates in sorghum is
sucrose, fructose, glucose, and starch are also present (Saballos
2008). While variation within the structural carbohydrate profile
has been documented in sorghum (Murray et al. 2008a), few
studies have examined the genetic architecture and control of
these traits in sorghum or other grasses.

Association studies in sorghum have revealed genetic con-
trols of many phenotypes including height (Brown et al. 2008;
Murray et al. 2009), flowering time (Mace et al. 2013a), panicle
architecture (Brown et al. 2006), seed size (Zhang et al. 2015),
and various domestication traits (Morris et al. 2013a). Most of
the studies have been conducted to elucidate the genetic archi-
tecture of complex traits as they relate to grain production, not
bioenergy production. Because breeding for bioenergy crops
with high biomass or fermentable sugars requires a conceptual
adjustment from the traditional dwarfed cereals (Salas Fernan-
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dez et al. 2009), a characterized resource specifically arranged
to represent critical bioenergy phenotypes not only allows for
greater progress in the explication and exploitation of sorghum’s
natural genetic diversity, but also the diversity of the broader
Andropogoneae tribe.

To facilitate the use of genomic research for improved renew-
able energy through enhanced biomass-related traits, we created
a focused genomic resource, the sorghum bioenergy association
panel (BAP). With a total of 390 accessions and 232,303 SNPs, the
BAP captures sufficient diversity, yet restricts the panel to bioen-
ergy types to allow for more efficient and informative association
mapping. In this study, we introduce the BAP and demonstrate
its useful diversity for understanding key bioenergy phenotypes.
We also examine the relationship of carbon partitioning between
structural, represented by neutral detergent fiber (NDF), and
nonstructural carbohydrates, represented by nonfibrous carbo-
hydrates (NFC). Because these traits of carbon allocation are
defining characteristics between sweet and biomass sorghum,
understanding the genetic controls allows for more efficient im-
provement by enabling marker-assisted breeding and genomic
selection for both types of bioenergy sorghum. Our goal in this
research was not only to identify candidate genes that may be
the future targets of crop improvement, but also to lay a broader
foundation of genetic and genomic resources for future stud-
ies that seek to maximize the potential of sorghum and other
Andropogoneae as bioenergy crops.

Materials and Methods

Selection and representation of genetic resources

To ensure the accuracy and availability of this panel for future re-
search, all of the accessions have PI inventory numbers and may
be requested through the USDA Germplasm Repository Infor-
mation Network (GRIN)(File S1). This panel can be divided into
two subsets: sweet and biomass types (File S1), which represent
to the two most important bioenergy types. Sweet lines were
defined as having a Brix value over 10% at the milk development
stage or at physiological maturity. The sweet lines consist of 152
accessions, and the 238 biomass types make up the remaining
accessions. Sweet accessions include cultivars from previously
defined panels: the sweet sorghum association panel (Murray
et al. 2009) and the U.S. historic sweet sorghum panel (Wang
et al. 2009). The additional sweet accessions and the biomass
lines were chosen based on diversity of worldwide geographic
distribution, racial categorization, and agronomic characteristics
(File S1). The 390 lines comprise accessions from all five ma-
jor sorghum races (bicolor, caudatum, durra, guinea, and kafir)
with representatives from the entire African continent, Asia, and
the Americas (File S1). Several important lines were also added,
including lines sequenced at the Joint Genome Institute and
the first source of the reference genome, BTx623 (Paterson ef al.
2009).

Field design, phenotypes, and phenotyping protocols

The BAP was phenotyped in Florence, SC at the Clemson Uni-
versity Pee Dee Research and Education Center in 2013 and 2014.
Trials were planted on 76 cm rows at a planting density of ap-
proximately 96,000 plants ha~! in loamy-sand soil on 16 May
2013 and 6 May 2014, and were irrigated at the time of planting
and on an as-needed basis. Two complete randomized blocks
or replicates of the BAP were planted in each year. Due to the
extreme height of many of the accessions which were taller than
the irrigation pivot, no irrigation took place approximately 90



days after planting. Seed obtained through GRIN (www.ars-
grin.gov) was treated with a chemical slurry of Concep II, Niplt,
Apron XL, and Maxim XL. This seed treatment allowed for the
application of Bicep II Magnum for weed control at a rate of
3.5L ha~! prior to seed germination. Atrazine at a rate of 4.7 L
ha~! was applied before plants had reached a height of 45 cm.
Additionally, 125 kg ha=! of layby N was applied approximately
30 days after planting. Besides the chemicals used as part of the
seed treatment, no other insecticides or fungicides were applied.

Anthesis was determined when 50% of the plot had begun to
shed pollen. Height measurements were taken at physiological
maturity, or a set harvest date of Oct 1, from base of the stalk to
the apex of the panicle, or if no panicle was present, to the apex
of the shoot apical meristem. When possible each plot was har-
vested at physiological maturity of the genotype with the excep-
tion of genotypes that did not flower, which were harvested as a
single time point. At the time of harvest, three plants were cut at
the base of the stalk, panicles were removed, and fresh weights
were recorded. To remove the confounding effects of tillering on
a per area basis, yield and compositional data were generated
using three representative plants. Based on planting density,
this represents approximately 0.5 m of row length. Biomass
samples were dried at 40 °C. Dry weight was recorded once
samples had obtained a constant weight. Dry tons ha~! was
extrapolated based on the dry weight of the samples at the ap-
proximate planting density of 96,000 plants ha~!. Compositional
data, which includes NDF, NFC, Acid Detergent Fiber (ADF),
and lignin, were generated by analyzing the dried samples with
a Perten DA7250 near-infrared spectroscopy (NIR) instrument
(https:/ /www.perten.com). The custom NIR curves were de-
veloped by the Perten Applications team using wet chemistry
data from 107 unique samples and 10 blind technical replicates
generated by Dairyland Labs (www.dairylandlabs.com). Lignin
and ADF (a cumulative measurement of lignin and cellulose)
wet chemistry data were generated using the Association of Of-
ficial Agricultural Chemists (AOAC) protocol 973.18 whereas
NDF (a cumulative measurement of cellulose, hemicellulose and
lignin) and NFC (cumulative measure of nonstructural carbohy-
drates) data were generated using AOAC protocol 2002.04.The
wet chemistry samples were selected based on phenotypic and
spectra diversity, a protocol recommended from the Perten
Applications team. Yield and composition were compared in
the BAP to the Sorghum Association Panel (SAP) (Casa ef al.
2008), a previously defined sorghum panel focusing on grain
sorghum. Dry weights and compositional components in the
SAP were calculated based on five representative plants at a
rate of 131,000 plants ha~!. Compositional data for the SAP
were generated using a NIR analysis provided by Chromatin,
Inc. (https:/ /www.chromatininc.com). All compositional data
are presented as a percentage of dry matter (DM). The USDA-
GRIN provided racial and geographic origin information. To
provide a control phenotype as confirmation of the genomic
data, pericarp pigmentation, which is conditioned by a known
gene (Ibraheem et al. 2010), was characterized from the seed pro-
vided by GRIN following previously outlined methods (Rooney
2000). Phenotypes for the BAP are located in File S2.

Genotyping, SNP calling, filtering, and imputation

For each entry, five seeds from each plant were grown for two
weeks in a growth chamber, and DNA was extracted from
whole seedlings using a DNeasy Plant Mini kit from Qiagen.
Genotyping-By-Sequencing (GBS) libraries were generated us-

ing an ApeKI digestion, and following previously outlined pro-
tocols (Elshire et al. 2011). Sequencing was performed on an
Ilumina HiSeq 2000, with 95 barcoded individuals and one neg-
ative control included in each lane. Single-end reads for the
343 individuals have been deposited in NCBI SRA under the
BioProject identification number PRJNA298892.

Raw sequencing reads were filtered and processed using the
TASSEL 5.0 pipeline (Bradbury et al. 2007), and BWA (Li and
Durbin 2009) was used to align the filtered sequences to sorghum
reference genome version 2 available from Phytozome (Good-
stein et al. 2012; Paterson et al. 2009). A minimum aligned read
depth of 10 was required for calling SNPs in any individual. (See
File S3 and File S4 for details, sample command lines, and Perl
scripts.)

After trimming and filtering raw data for quality, we retained
over 350 million 64 bp sequencing reads, which corresponded
to 1.8 million unique, mapped tag locations in the sorghum
genome, and 327,121 putative SNP sites. After filtering low
coverage SNPs, individuals with too many missing sites, and
sites with a minor allele frequency below 5%, 232,303 SNPs in
343 accessions were retained. Missing genotypes were fully
imputed with the software fastPHASE (Scheet and Stephens
2006), with 20 independent starts of the EM algorithm. There is
a mean distance of 2-3 kb between each SNP, which is consistent
with the level and density of SNP discovery in the previously
published SAP (Morris et al. 2013a). The fully imputed data set
was used for all association analysis and heritability.

To make comparisons between the BAP and the SAP, raw data
from both panels were merged, and then filtered using similar
methods. However, for these analyses SNPs were filtered with
a minor allele frequency of 1% with coverage of at least 60% of
individuals and imputed loci with less than 80% confidence were
considered missing. The final analyses of allele frequencies and
expected heterozygosity were performed on 187,766 common
SNPs between the BAP and the SAP.

Genetic differentiation and population structure

Levels of genetic differentiation between grain, sweet, and
biomass sorghums were calculated using Wright’s Fsr (Wright
1969). For these estimations, we used non-imputed SNP data,
and selected sites with a minimum of 80 individuals per type
present, as well as a minimum minor allele frequency of 5%. To
determine if mean Fg7 values were significantly different from
zero, permutation tests were performed where individual geno-
types (across all polymorphic sites) were randomly permuted
into groups of the same size 1000 times, and mean Fst was
recalculated to determine a null distribution.

Genomic comparisons between the SAP and the BAP were
calculated using R statistical software (Team 2011). Expected het-
erozygosity was calculated using the R package “pegas” (Paradis
2010). Heterozygosity was calculated on a per SNP basis and in a
20 kb sliding window with a 2 kb overlap. The 20 kb region was
chosen based on the established LD in sorghum (Hamblin et al.
2004; Mace et al. 2013b). To determine significance, permutation
tests were performed by randomly assigning individuals into
groupings of the same size as the original BAP and SAP for 100
permutations. The difference in heterozygosity between the two
panels was re-calculated for each permutation, and p-values
were generated by counting the number of permuted values
which were equal to or greater than the observed heterozygosity
difference. Sites with p-values lower than 0.01 were considered
significant.
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Population structure was estimated using the program
STRUCTURE (Pritchard et al. 2000). The genetic data were
thinned to 1 SNP every 20 kb using the vcftools v0.1.13 thin
function (Danecek et al. 2011). This left approximately 1 SNP
per linkage group. Final structure analysis was performed with
16,476 loci from the 343 individuals with genomic data. Analysis
was performed with K values ranging from 1-12. Five indepen-
dent replicates were generated for each K value with a 10,000
run burnin period followed by 200,000 sampling iterations. Prin-
cipal component Analysis was conducted using EIGENSTRAT
method (Patterson et al. 2006) version 6.0.1 using the ‘Smart PCA’
perl command.

Genome-wide association scans

Single-SNP tests of association were performed using models im-
plemented in the R package GAPIT (Team 2011; Lipka et al. 2012).
Association scans were performed using a general linear model
(GLM), a mixed linear model (MLM) with internally calculated
kinship and population structure, a MLM with kinship and and
an externally calculated population structure via STRUCTURE,
and the compressed mixed linear model (CMLM) (Zhang et al.
2010), which internally controls for population structure and
kinship among individuals and uses cluster analysis to assign
individuals to groups. The MLMs and the CMLM both incorpo-
rate a kinship (K) matrix and population structure (Q matrix),
which has been shown to increase statistical power and reduce
false positives (Yu et al. 2006). Before presenting GWAS results,
model fit was compared by examining the QQ plots (File S5),
and the CMLM was selected as the model with superior fit. To
further reduce the chance of false positives, significance levels
in these tests were determined using the Bonferroni correction
method resulting in a significance cutoff of approximately 3.0 x
10~7. Due to an earlier than expected frost in 2013, only 211 were
included for genomic analysis. In 2014, a total of 331 individuals
were used in genomic analysis.

Linkage disequilbrium (LD) was calculated locally within a
1mb region surrounding each significant locus. Within each re-
gion, a pairwise LD between each SNP was calculated using the
R Package, ‘Genetics’. The extent of LD was determined to decay
when the 12 value was less than 0.1 (File S6). Genes potentially
linked to any significantly associated SNP were identified by
scanning the version 2.1 of the S. bicolor genome (Goodstein et al.
2012). Gene function was determined using the Panther Classifi-
cation System (Mi ef al. 2013) and the European Bioinformatic In-
stitute’s PFAM identification (Finn ef al. 2014). Candidate genes
were selected based on functional annotations provided by Phy-
tozome, Panther Classification System, and the PFAM database.
SNP effects were predicted by the software snpEff (Cingolani
et al. 2012).

Phenotypic analysis

Phenotypic analysis was conducted using R statistical soft-
ware (Team 2011). Maximum, minimum, mean, and standard
deviation values for the BAP were calculated using the mean
values of both replicates per year. Phenotypic values in the SAP
were calculated based on two replicates in 2013. Accessions that
did not flower (i.e., photoperiod sensitive accessions) were not
included in the anthesis analysis.

Correlations were determined using the phenotypic mean
of the two replicates per year. Pearson correlations and the
subsequent p-values were calculated using R statistical soft-
ware with the cor.test() function. Marker-based estimation of
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narrow-sense heritability was calculated with the “heritability”
package (Team 2011; Kruijer et al. 2015).The phenotypic means
for each year were treated as replicates in the input. Since the
narrow-sense heritability calculation uses the genomic mark-
ers (Kruijer et al. 2015), a random subset of 100 individuals
with complete datasets (ADF, NDF, NFC, lignin, height and
dry weight) from 2013 and 2014 were used in the calculations
to avoid discrepancies based on genotypes. The centered relat-
edness matrix used with the marker-based heritability analysis
was generated from GEMMA (Zhou et al. 2013).

To ensure that phenotypic values (and therefore genomic as-
sociations) were not confounded with the block effect, a model
was developed for the phenotypic values that included effects
of accession and block. Since the blocks contained up to 400
accessions, there may have been field heterogeneity which im-
pacted the phenotypic values. Using the predicted values from
the model above (basically the average of the two observations)
hopefully minimized the impact of the field heterogeneity. To
ensure that the phenotypic values were not confounded with
field heterogeneity, an additional model was developed for the
phenotypic values that also included covariates associated with
the field effect. For this study the covariates chosen were an-
thesis and height (see descriptions below). Fortunately these
covariates turned out to have almost no relationship (not statis-
tically significant) with the primary phenotypes of interest, and
even after adjusting for the covariates, the phenotypic values
of the accessions remained essentially unchanged (File S7). File
S7 also contains the model used for the analysis and the scatter-
plots for actual and predicted phenotypic values. Therefore we
concluded potential field effects were not creating a systematic
bias in the phenotypic data and used the predicted phenotypic
value for each accession from the model including block effects
in the subsequent association analyses. For the GWAS results,
values were standardized by subtracting the mean, dividing by
the standard deviation, and then averaging across replicates.

Results

Genomic diversity and differentiation

To identify genomic regions differentiated between the SAP
and BAP, expected heterozygosity was calculated for individual
SNPs and within a 20 kb sliding window with a 2 kb overlap.
There were 187,766 common SNPs between the panels. Of these
SNPs, 14,841 loci differed in expected heterozygosity by more
than 25%. To look at global patterns in differentiation between
the two resources, the SNPs were divided into sliding windows
of 20 kb representing genomic regions within the estimated LD
distance and the mean heterozygosity for each block was com-
pared (Figure 1). This resulted in 26,110 regions in which 525
differed in the expected heterozygosity by more than 25%. Since
grain types have been selected for early maturity in temperate
environments for grain maturation and bioenergy types have
been selected for delayed flowering and increased biomass, it
would be expected that regions surrounding major maturity
genes would differ in the expected heterozygosity. To test this
hypothesis, the expected heterozygosities of the 20kb flanks
surrounding known maturity genes (Ma; (Murphy et al. 2011),
Magz (Childs et al. 1997), and Mag (Murphy et al. 2014)) and a
known dwarfing gene (Dws (Multani et al. 2003)) were com-
pared between the two panels. The regions surrounding May,
Mag3, and Dws in the BAP and SAP were significantly different
whereas Mag was not. There was low SNP coverage around
the Mag locus which may explain why the Mag locus was not



differentiated between the two data sets. Although the SAP had
a greater average heterozygosity near Maj, regions surrounding
Majz and Dws; had higher average heterozygosities in the BAP
than the SAP (Figure 1). This data highlights the fundamental
differences in the two panels and suggests that there may be
unexploited genetic diversity in the BAP due to a selective bottle-
neck for dwarfed, early-maturing grain accessions in temperate
environments.

Because sweet and biomass sorghum are the primary types
used for bioenergy production, determining how differentiated
these two types are could provide insights into the genetic ar-
chitecture of compositional components. However, the level
of differentiation (as measured by Fs) between the sweet and
biomass types of sorghum was overall very low (mean Fg1 =
0.024, where 0 = no differentiation and 1 = complete differentia-
tion), although it was significantly greater than the null distribu-
tion (File S8). The maximum value of Fst is 0.276, highlighting
that there were no fixed differences between types in the data
set despite significant phenotypic differences.

Population structure

Previous work in the SAP has shown that population structure
is related to the categorization of sorghum to the five botanical
races and numerous geographic regions of sorghum coloniza-
tion (Casa et al. 2008; Brown et al. 2011). Previous work has also
demonstrated that these phenotypically based classifications are
genetically supported (Brown et al. 2011). Based on these obser-
vations it would be expected that similar population patterns
would appear in the BAP. Definitive patterns emerged support-
ing the previous findings that race and geographical origin help
define subpopulation categorization (Figure 2). Figure 2 shows
the STRUCTURE results from K=6 of 343 individuals in the BAP.
As expected, each of the five botanical races emerge as subpopu-
lations. Additionally, a sixth cluster appears which divides the
Ethiopian accessions into two distinct groups. Since Ethiopia
is the center of diversity for sorghum, it is not unexpected that
distinct subpopulations could emerge when analyzing popula-
tion structure. Racial data was not provided by GRIN for any of
the accessions included in the orange cluster (Figure 2). Since
racial classification is determined, at least in part, by panicle
architecture and seed characteristics, it was not possible to es-
tablish racial classifications for this group due to the limited
panicle emergence in the photoperiod sensitive accessions. In-
terestingly, the most distinct group, the guinea population in
the green cluster, cluster heavily together and have the lowest
proportion of membership. Principal Component Analysis also
showed clustering of the West African guinea types as well as
the unclassified Ethiopian accessions. Additional STRUCTURE
and Principal Component Analysis results are in File S9.

Phenotypic means, distributions, correlations and heritability

To highlight the differences between the grain-dominated SAP
and the BAP, data were collected for phenotypes important for
bioenergy sorghums. Comparison between the two panels re-
vealed distinct patterns of phenotypic selection for each of the
two types (Table 1). The average anthesis date in the BAP was
almost 30 days longer than the SAP. This would have been even
greater if photoperiod sensitive lines were included in the anal-
ysis. The average height was nearly two meters greater in the
bioenergy than the grain panel. Also, the accumulation of above
ground biomass was significantly greater in the bioenergy panel.
The composition traits as a proportion of dry matter (DM) did

not differ as much between the two panels; however, when
extrapolating the compositional components based on the dry
weight, differences between two panels become more apparent.
For example, the average accumulation of NDF ha—! would be
nearly 13 tons versus 6 tons in the SAP. Not surprisingly, NFC
as a percentage of DM is higher in the BAP than the SAP. Since
139 of the accessions in the BAP are classified as sweet types
that have been selected to accumulate nonstructural carbohy-
drates, it is reasonable to expect that the BAP would have a
higher percentage and maximum value for the accumulation of
nonstructural sugars.

Of the phenotypes collected in the BAP, the marker assisted
narrow-sense heritability estimates were generally high. Overall,
the heritability of each phenotype is similar to previously pub-
lished work (Table 2). However, anthesis heritability was much
higher in the BAP than previously published studies (Murray
et al. 2008a). This may be because many of the accessions in the
BAP rely on photoperiod induction to initiate reproductive tis-
sue formation. Since the heritability estimation used data from
only one geographic location, the heritability estimate likely
does not reflect the actual impact of the various latitudes and
day lengths on photoperiod sensitive lines. If anthesis values
were collected in an environment with a shorter day length
and the same analysis was conducted to calculate heritability,
these values would probably be much lower. The compositional
phenotype heritabilities were similar to previously published
results (Murray et al. 2008a).

Validation of GWAS using seed color as a control

Pericarp pigmentation in sorghum seeds is a well-studied trait
that is known to be controlled by a MYB transcription factor
(Y1; Yellow seed1) (Rooney 2000; Ibraheem et al. 2010; Morris et al.
2013b). Since this gene has been mapped in the SAP (Morris et al.
2013b), pericarp pigmentation was used as a control in this study
to validate the genetic data. As expected, all of the models in
GAPIT (GLM, MLM, and CMLM to control for population struc-
ture and kinship) identified a single region within the transcript
of the Y1 locus (Sobic.001G397900) that was strongly associated
with seed color in the BAP (Figure 3).

Association mapping for structural and nonstructural carbo-
hydrates

Association mapping revealed genomic regions strongly associ-
ated with NDF and NFC. Since these phenotypes are inversely
related to one another, it would be expected that many of the
same significant loci identified for one phenotype were also
present in the other phenotype. The association scans from NDF
and NFC demonstrate this relationship (Figure 4).

Using the CMLM from GAPIT, the association scans revealed
a total of 8 significant SNPs representing 5 loci and 22 genes
(File 510). LD was calculated locally for each significant SNP
(File S6). Significantly-associated SNPs within the distance of
LD decay of on another were considered a single locus; also,
any gene within the LD estimate was considered linked, and
plausibly implicated in the determination of the phenotype. Of
the 8 significant SNPs, two are intragenic missense variants,
indicating the higher likelihood that specific genes contribute to
the phenotype.

A total of five regions were identified through the associ-
ation methods: two loci were located on Chromosome 4 and
three on Chromosome 6. Although most loci identified had
plausible explanations of their impact on biomass compositional
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components, one of the regions on Chromsome 4 is particularly
interesting. A SNP in this region causes an amino acid change
to a vacuolar iron transporter. The SNPs in this linkage group
appear to create a distinctive haplotype structure. There were
three haplotypes in this region (Figure 5). The mean NFC of hap-
lotype III was 41.8% while the mean value of haplotype I was
only 25.5% NFC. Haplotype II, which only differed from haplo-
type I by a single base pair, also had a low NFC value (21.5%).
Of the individuals with NFC over 40% DM (29 individuals), 11
individuals have haplotype III. The top five individuals all have
haplotype III at this location. Historically important sweet lines
such as Rio, Wray, Leoti, and Sugar Drip each possessed haplo-
type III at the specified locus (Figure 5). The strong association
with NFC coupled with the clustering of historically important
accessions provides evidence that this region impacts the accu-
mulation of nonstructural carbohydrates in Sorghum bicolor, and
could be important for bioenergy sorghum improvement.

Due to the potentially confounding effects of height and ma-
turity on accumulation of structural and nonstructural carbo-
hydrates, the candidate genes were compared to the locations
of known maturity genes (Ma;-Mag) (Mace and Jordan 2010)
and known dwarfing genes (Dw;-Dw,) (Mace and Jordan 2010) .
There was no co-localization among any of the maturity genes or
dwarfing genes with any of the significantly associated regions.
Furthermore, there was no overlap among the nearly 221 can-
didate genes identified for maturity (Mace et al. 2013a) and the
candidate genes for structural or nonstructural carbohydrates
identified in this study. In addition, GWAS were conducted on
height and flowering time from the data in the BAP; no signifi-
cant SNPs co-localized with the results from NFC and NDF (File
S11).

Candidate gene identification

Each region identified in through GWAS has plausible candi-
dates for biomass composition (Table 3). Most notably, SNP
S4_63347613, shown in Haplotype III (Figure 5), causes an amino
acid change from an alanine to a valine in a vacuolar iron trans-
porter family protein. Previous studies have shown that sucrose
accumulation in plants regulates an iron-deficient response (Lin
et al. 2016). Furthermore, in a previous comparison of diver-
gence between sweet and grain types, this region underwent
a segmental duplication from their most recent common an-
cestor, suggesting possible neofunctionalization of the two VIT
between sweet and grain sorghum (Jiang et al. 2013). Addition-
ally, a vacuolar-processing enzyme was identified in this region.
Vacuoles serve a major role in sucrose accumulation and mobi-
lization in plants (Leigh 1984). The other region on Chromosome
4 contains four genes. One of which, a B-box zinc finger protein,
shares homology with a salt tolerance homolog. Sugar accumu-
lation has been shown to be a molecular response to salt stress
in sorghum (Sui et al. 2015).

The region identified on Chromosome 6 had two genes
coding for Cellulase enzymes, Sobic.006G122200 and So-
bic.006G122300. These genes hydrolyze glycosidic bonds in
complex carbohydrates, such as cellulose, which is the major
component of NDE. These SNPs were associated with increased
levels of nonstructural carbohydrates and decreased levels of
structural carbohydrates. These glycoside hydrolase family 5
proteins could be involved with the degradation of structural
components of the cell wall. These were the only two genes
to have GO terms associated with carbohydrate metabolic pro-
cess (GO:0005975). Additionally, a Transducin/WD40 family
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protein was identified from a significantly associated SNP 773
bp upstream. Transducin/WDA40 proteins have been shown to
increase biomass accumulation (Gachomo ef al. 2014). Although
the genes identified in this study are plausible candidates for
biomass compositional components, further evidence will be
needed to dissect the true effect of these allelic variants.

Discussion

Sorghum as a functional model for bioenergy and the value of
the BAP

Of the potential bioenergy Andropogoneae candidates, sorghum
has emerged as one of the preferred species for direct commer-
cialization as a bioenergy crop and as a functional model for
other Andropogoneae. Sorghum has natural advantages as a
model for this family of grasses because of its relatively small
diploid genome (~ 730 Mb), significant breeding history, and
substantial natural diversity. This extensive genetic and pheno-
typic diversity provides the foundation for gene discovery and
crop improvement. It also allows sorghum to serve as a model
for other bioenergy Andropogoneae because of its adaptability
to various bioenergy conversion technologies. Due to its high
levels of sugar accumulation and its close evolutionary history,
it can also serve as a relevant reference for the Saccharum genus.
Since there are no reported genomic incompatibilities among the
four types of sorghum, genes identified that improve bioenergy
sorghum performance in the BAP could be incorporated into
grain and forage types as well.

The BAP was constructed by using publicly available racial
and geographic as well as agronomic data from field evaluations.
Since previous studies have shown that the racial classifications
are genetically supported (Brown et al. 2011), the hypothesis was
that by selecting lines incorporating the major botanical races,
we would be able to capture a sufficient amount of genetic diver-
sity. The botanical races are correlated with geographic regions.
After we selected individuals based on racial distribution, we
supplemented under represented regions with accessions with
known geographic origins. Phenotypically, we restricted acces-
sions to tall photoperiod sensitive, late maturing accessions. We
also chose accessions screened for resistance to a major sorghum
disease, anthracnose. This was an attempt to remove the con-
founding effects of varying resistances and susceptibilities since
the presence of the disease could alter the carbon composition
profile of the individual accession. Although we tightly con-
strained the amount of diversity for flowering time, height, and
disease susceptibility, we capture an appropriate amount of ge-
nomic diversity compared to other panels. Finally, historically
important lines used in breeding and lines that were sequenced
at the Joint Genome Institute were included. All accessions
are available for public distribution through the USDA’s GRIN
system.

The development of a genetic and genomic resource specif-
ically designed to capture the natural genetic and phenotypic
diversity of sorghum for carbon partitioning and biomass com-
position increases the efficiency and efficacy of association genet-
ics and incorporation of favorable alleles into a breeding pipeline.
Although nested association mapping populations (NAM) and
multi-parent advanced generation inter-cross (MAGIC) popula-
tions have been shown to improve the detection of small effect
loci and reduce the false-discovery rate (Cavanagh et al. 2008; Yu
et al. 2008), these populations severely restrict the diversity and
thus the detection of novel gene candidates or rare, favorable al-
leles. In addition, diversity panels developed for conservation of



genetic resources and analysis of genetic diversity impede many
efforts to identify causal genes either because of the confounding
effects as a consequence of the diversity or the lack of statistical
power from a low phenotypic frequency. The BAP’s construction
limits the confounding effects associated with flowering time
and height (Flint-Garcia et al. 2005) by limiting the panel to tall,
late-flowering photoperiod sensitive accessions. Furthermore,
the selection of accessions with known phenotypic diversity in-
creases the likelihood that variants are at higher frequencies in
the mapping population, which increases the probability of a
true positive association (Myles et al. 2009). The creation, evalu-
ation and characterization of a diversity panel with the public
dissemination of data provides insights to create better con-
structed NAM, MAGIC, recombinant inbred lines (RILs), or
candidates for whole-genome re-sequencing. Overall, the BAP
was created to overcome the limitations with other genomic
resources, and the effective mapping of two key phenotypes
show the advantages of using the BAP for critical bioenergy
traits, but future studies should implement better field designs
for improved statistical analysis. An important insight from
this study is that the large number of accessions allowed a thor-
ough analysis of the associations, but resulted in a design with
very large block size. Even though we corrected for possible
field heterogeneity from the large block size, additional studies
using this resource should utilize superior designs such as an
incomplete block design with multiple row plots. This allows for
adjustment due to competition effects and other field variants.
With more appropriate design, the BAP has the potential to serve
as a critical resource for the continued advancement of sorghum
as a preferred bioenergy feedstock.

Conclusion

The objective in this study was to expand the existing founda-
tion of genetic and genomic resources for bioenergy research in
non-model Andropogoneae. By creating the sorghum BAP, we
provide a genetic and genomic resource that not only provides a
foundational knowledge for determining the genetic architecture
of traits important for bioenergy, but also expands the current
germplasm in the sorghum community. Although this panel lim-
ited phenotypic variance of the included accessions to bioenergy-
like ideotypes, genetic and phenotypic diversity of the overall
species was maintained. The strong heritabilites and the low
correlations of the compositional phenotypes to dry weight sug-
gested that composition can be improved without affecting the
total yield (Murray et al. 2008b). The association analysis iden-
tified regions of the genome that could be targeted to improve
biomass quality. However, others have suggested that increas-
ing total yield is more important than improving composition
quality for maximizing extractible energy per unit input (Murray
et al. 2008a). Since increasing sink strength has been shown to
advantageously affect yield (Bihmidine et al. 2013), understand-
ing the genetic controls of the compositional components could
allow for improved sink strength with a positive yield outcome.
By identifying genomic regions independently affecting yield
and composition, researchers could simultaneously select for
both yield and increased quality instead of selecting for one or
the other. This would allow researchers to increase yield and
compositional quality concurrently promoting an increase in
breeding efficiency and bioenergy optimization. Furthermore,
determining the genetic controls of carbon allocation in sorghum
may be useful in elucidating the genetic mechanisms controlling
biomass yield, sugar accumulation, and other compositional

constituents in other C, grasses.

By analyzing phenotypic and genomic data from the BAP, re-
searchers can better design experiments to study the genetics of
bioenergy sorghum. Providing corroborating evidence on how
sorghum populations are structured not only reinforces previous
studies (Morris et al. 2013a; Casa et al. 2008), but also provides
valuable information pertaining to how certain botanical races
of sorghum may perform in a bioenergy context. The establish-
ment, characterization, and subsequential genomic analysis of
this resource have highlighted regions of the genome and pos-
sible candidate genes for targeted improvement in bioenergy
sorghum. These candidate genes need further validation, such
as analysis of segregating populations, targeted gene sequenc-
ing, and functional tests. The need for the grass community
to develop appropriate resources for gene identification with
functional annotations is imperative for the continued improve-
ment of bioenergy feedstocks. The creation and analysis of this
foundational resource provides researchers with valuable tools
and essential knowledge for continued experimentation with
bioenergy sorghum and other Andropogoneae. Providing eas-
ily accessible accessions with genomic information allows for
greater efficiency of research by encouraging collaboration and
the dissemination of information. The establishment, character-
ization, and analysis of the BAP facilitate the advancement of
sorghum for bioenergy production and optimization worldwide,
and provide a foundational resource for the development of
renewable energy.
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Table 1 Phenotypic comparisons between the SAP and BAP

BAP SAP
Phenotype N  Average Min. Max. Std.Dev. | N  Average Min. Max. Std. Dev.
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ADF (% of DM) 387 41.5 140 549 7.9 379 37.5 248 612 5.5
NDF (% of DM) 387 67.1 471 812 7.1 379 62.9 432 784 6.1
NEC (% of DM) 387 27.6 139 500 8.0 369 20.3 105 455 6.4
Lignin (% of DM) 387 6.6 1.6 10.5 1.6 NA NA NA NA NA

Table 2 Heritability and correlations of phenotypes in the BAP

Phenotype | H? Calculation h? Estimation | Anthesis Height Dry Weight ADF NDF NFC Lignin
Anthesis 0.86 0.90 - 0.724*** 0.687*** 0.530*** 0.163* -0.088 0.579***
Height 0.72 0.82 0.724%** - 0.549*** 0.430***  0.245**  -0.141**  0.527***
Dry Weight 0.39 0.32 0.687***  0.549*** - 0.009 -0.088 0.183*** 0.056
ADF 0.55 0.62 0.530***  0.430*** 0.009 - 0.837***  -0.866™**  (0.872***
NDF 0.51 0.54 0.163*  0.245** -0.088 0.837*** - -0.963***  0.721***
NEC 0.50 0.56 -0.088 -0.141** 0.183*** -0.866***  -0.963*** - -0.704***
Lignin 0.57 0.70 0.579***  0.527*** 0.056 0.872***  0.721**  -0.704*** -

*Signifiance at 0.05 probability; **significance at 0.01; ***significance at 0.001.

Table 3 Significant SNPs, candidate genes, and number of genes within LD of significant SNP

SNP P-value Local LD  Num. of genes in region Candidate gene Distance to candidate gene (bp)
S4 63301409 6.85x1078 23kb 4 Salt-tolerance homolog 18,095 downstream
S4 63301429 6.85x 108 23kb 4 Salt-tolerance homolog 18,105 downstream
S4 63347613  1.41x1077 23kb 8 Vacuolar iron transporter Intragenic
S4 63347623 1.41x1077 23kb 8 Vacuolar iron transporter Intragenic
S6_4320818  4.40x 1078 1kb 0 NA NA
S6_4330906 1.64x 1077 1kb 0 NA NA
S6_49773083 1.68x 1078 16kb 9 Cellulase (Glycosyl hydrolase) 13,666 downstream
S6_49784457 148 x 1078 16kb 4 Transducin/WD40 homolog 773 upstream
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Genome-wide heterozygosity patterns in the BAP and SAP
with selected maturity and height loci

A BAP

SAP Position (bp)

Position (bp)

B BAP Mai  C
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Figure 1 A) Genome-wide heterozygosity calculated for the
BAP (top) and SAP (bottom) with a 500 kb sliding window. B)
Average heterozygosity in 20 kb windows with 2 kb overlap
for the region on Chromosome 6 containing the Ma; gene,
Sobic.006G057900, in the BAP (top) and the SAP (bottom). C)
Average heterozygosity in 20 kb windows with 2 kb overlap
for the region on Chromosome 7 containing the Dws3 gene,
Sobic.007G047300, in the BAP (top) and the SAP (bottom).

Population structure of the BAP

Bicolor

Guinea

Caudatum

Ethiopian/Durra

Figure 2 Population structure results with six defined subpop-
ulations. The purple cluster represents bicolor accessions. The
green cluster has the fewest number of members and is mainly
made of up guinea accessions. The pink cluster represents
Caudatum accessions. The yellow cluster represents Durra
accessions that are mainly from Ethiopia. The blue cluster in-
cludes individuals that cluster with Kafir types. This grouping
is usually associated with photoperiod insensitivity. The or-
ange cluster represents accessions from Ethiopia, but no racial
data was available for these lines.
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GWAS results for pericarp pigmentation in the BAP using mul-
tiple models

o} H
~
© .
3 wn
e
g) <
_| @
o
2 3 4 5 6 7 8 9 10
Chromosome
. .
© L]
~
3 ©
S
(=2
9 <
[
o
1 2 3 4 5 6 7 8 9 10
CMLM Chromosome
L H
. :
~ .
g . :
9_ wn
5’ <
[
o

Chromosome

Figure 3 A single locus, the Y1 MYB transcription factor, was
identified in all three models as expected. This phenotype rep-
resents a control to validate correct SNP calling, imputation,
and GWAS methodology.
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GWAS results for NFC and NDF
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Figure 4 A total of 8 unique SNPs, 5 loci, and 22 genes were
identified using the CMLM for NFC and NDF. SNPs with a
p-value less than 3.00 x 10~7 were considered significant.

Haplotypes on Chromosome 4 in the region significantly as-
sociated with NFC
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Figure 5 Three haplotypes on Chromosome 4. This region was
significantly associated with NFC in the CMLM in 2014. The
yellow indicates the more frequent allele, and the blue indi-
cates the less frequent allele. Haplotypes I and II correspond
to low values of NFC while haplotype III corresponds to high
levels of NFC.
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